214B: Lab 1

Correlation and Regression

TA: Melissa Gordon Wolf

Research Question: A researcher at a school district wants to know about the relationship between student test scores and the percentage of English language learners within the district.

Testable Hypothesis: Does the percentage of English language learners within a district predict test scores?

Step 1: Label the data.

Open the SPSS file from Gauchospace and use the codebook below to add the variable labels. *Hint: Do this in the Variable View tab.*

Variable	Label	Type
ID	School ID indicator	Nominal
testscr	Combined average test scores of math and English	Continuous
meal_pct	Percent qualifying for free and reduced priced lunch	Continuous
$comp_stu$	Computers per students	Continuous
$expn_stu$	EXPENTITURES PER STUDENT (\$'S)	Continuous
str	Student teach ratio (ENRL_TOT/TEACHERS)	Continuous
avginc	District average income (in units of thousands)	Continuous
el_pct	Percent of English Language Learners	Continuous
$completeA_G$	Percentage of Students who complete A-G UC requirement	Continuous

In R:

- 1. First, import the dataset using haven.
- 2. Use the var_label command from the labelled package to add variable labels. *Hint below*

```
labelled::var_label(lab1data)<-list
(ID="School ID indicator",
testscr="Combined average test scores of math and English" ...)</pre>
```

Step 2: Univariate Statistics

Answer questions 1 and 2 on the Gauchospace Quiz.

Let's generate the univariate statistics for the two variables of interest: **testscr** (*Combined average test scores of math and English*) and **el_pct** (*Percent of English Language Learners*). Both of these variables are continuous, so we'll get descriptive statistics such as the mean and skew of each variable.

1. Select Analyze > Descriptive Statistics > Explore

2. Move testscr and el_pct into the Dependent List

- 3. Under Statistics, select Descriptives and Percentiles
- 4. Under **Plots**, only select **Histogram**
- 5. Press \mathbf{OK}

NOTE	NOTE	15		igin	N I
ta Explore					×
 ✓ ID ✓ meal_pct ✓ comp_stu ✓ expn_stu ✓ str ✓ avginc ✓ completeA_G 		eendent List: ' testscr ' el_pct tor List: el <u>C</u> ases by:		Statistics Plots Options Bootstrap	3
Display <u>B</u> oth O St <u>a</u> tistics () Plots				
ОК	Paste Res	et Cancel	Help		
					-

In R

1. Use the ${\tt describe}$ command from the ${\tt psych}$ package. Hint below

psych::describe(lab1data\$testscr)

Step 3a: Bivariate Relationships -> Graphing

Let's graph the relationship between **testscr** and **el_pct** using a scatterplot.

- 1. Select Graphs > Chart Builder
- 2. Under Gallery, select Scatter/Dot and drag Simple Scatter onto the Chart Preview

🔚 Chart Builder				×
<u>V</u> ariables:	Chart preview uses example data	þ	Element Properties Chart Appearance Options	
Area a price provide a price provide a price provide a price provide a price prize prize price price prize prize price price price prize price pr	Drag a Gallery chart here to use it as your starting point OR Click on the Basic Elements tab to build a chart element by element Groups Point ID Titles/Footnotes		Egit Properties of:	×
[(OK Paste Reset Cancel Help			

3. Drag testscr onto the y-axis and el_pct onto the x-axis.

- 4. At the bottom of the **Element Properties** tab, select **Total** under **Linear Fit Lines**
- 5. Press **OK**

$\mathbf{In} \ \mathbf{R}$

- 1. Use the plot command from base R. Figure this out yourself
- 2. Use ggplot.

```
ggplot(lab1data,aes(el_pct,testscr))+
  geom_point()+
  theme_minimal()
```

Step 3b: Bivariate Statistics -> Modeling

To evaluate the relationship between two continuous variables, we can use a correlation and a regression model. However, both of these models assume that there is a linear relationship between the two variables. Is there?

Correlation

Answer questions 3 and 4 on the Gauchospace Quiz.

- 1. Select Analyze > Correlate > Bivariate
- 2. Drag testscr and el_pct into the Variables box
- 3. Press **OK**

Correl	ations
001101	anons

	testscr	el_pct
Pearson Correlation	1	644
Sig. (2-tailed)		.000
Ν	420	420
Pearson Correlation	644**	1
Sig. (2-tailed)	.000	
N	420	420
	Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N	testscrPearson Correlation1Sig. (2-tailed)420Pearson Correlation644Sig. (2-tailed).000N420

**. Correlation is significant at the 0.01 level (2-tailed).

Interpreting Correlations

Rubric for Basic Correlation Analysis Write-up					
Conclusion Sentence	-negative or positive correlation?				
	-between which variables?				
Report Numerical Evidence	-correlation coefficient				
	+/2 to $+/29 =$ weak				
	+/3 to $+/39$ = moderate				
	+/4 to $+/69 =$ strong				
	+/7 to +/- $1 =$ very strong				
	-p-value – statistically significant?				
Interpret	-statements that either				
	interpret your numerical evidence				
	into words				
	interpret your conclusion without				
	statistical language – for example,				
	what does it mean that two variables				
	are negatively correlated?				

For more information: http://www.psychwiki.com/wiki/How_do_I_write_a_Results_section_for_Correlation%3F

${\rm In}\ {\rm R}$

- 1. Use corr from base R. Figure this out yourself
- 2. Use rcorr from Hmisc package.

Hmisc::rcorr(lab1data\$el_pct,lab1data\$testscr)

Regression

Test of independence:

 $H_0:\beta=0$

 $H_A:\beta\neq 0$

We want to know if there is a relationship between **el_pct** and **testscr**. We assume there is no relationship $(H_0 \text{ or the null hypothesis})$. Note that β is the slope.

Answer questions 5, 6 and 7 on the Gauchospace Quiz.

- 1. Select Analyze > Regression > Linear
- 2. Drag testscr into the **Dependent** box and **el_pct** into the **Independent(s)** box.

Linear Regression		News	10		×
 ID meal_pct comp_stu expn_stu str avginc el_pct completeA_G 			int: icr ident(s): ct <u>M</u> ethod: Er iVariable: bels: ight:	Next	Statistics Ploţs Save Options Style Bootstrap
	UK	Paste <u>R</u> es	Cancel	негр	

3. Under Statistics select Confidence Intervals and press Continue

	🕼 Linear Regression: Statistics 🛛 🕹
t	Regression Coefficien Model fit Estimates R gquared change Confidence intervals Descriptives Level(%): 95 Covariance matrix Collinearity diagnostics
	Durbin-Watson <u>Casewise diagnostics</u> Outliers outside: 3 standard deviations All cases
	Cancel Help

4. Under **Plot**, drag **ZRESID** (standardized residuals) into the **Y** box, and **ZPRED** (standardized predicted values) into the **X** box. Select the **Histogram** under the **Standardized Residual Plots**.

tinear Regression: Plots	×
DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	Scatter 1 of 1 Previous Next Y: *ZRESID X: *ZPRED
Standardized Residual Pl <u>Histogram</u> No <u>r</u> mal probability plo	t
Continue	Cancel Help

You should see the following output:

- Model Summary
 - Gives us the "omnibus" or "overall" model results
 - Look for the correlation and \mathbb{R}^2
- ANOVA Table
 - Gives us the "omnibus" or "overall" model results
 - Regression Sum of Squares + Residual Sum of Squares = Total Sum of Squares
 * These are used to determine if the F-test is significant

r Ə	irror ne nate	Std. En d R of the re Estima	Adjusteo Squar	R Square	२	odel
3	9173	413 14.59	.4	.415	44 ^a	
			pct	onstant), el	ors: (C	a. Predi
			scr	riable: test	dent Va	b. Depe
						OVAª
	an	Mear	f	Sum of		OVAª
Г	an are	Mear f Squa	f s d	Sum of Square		OVA ^a
19 29	an are 1.569	Mear If Squar 1 63109.3	f is d	Sum of Square 63109.5	ession	OVA ^a odel Re
i9 29 9	an are 1.569 1.919	Mear If Squar 1 63109.3 418 212.3	f s d 69 25 4	Sum of Square 63109.5 89000.0	ession dual	OVA ^a odel Re
n re 56 91	al a	Meai If Squa 1 63109. 418 212.	f s d 69 25 4	Sum of Square 63109.5 89000.0	ession dual	OVA ^a odel Re

b. Predictors: (Constant), el_pct

• Coefficients table

- Note on the output that the slope (β) is -.671
- Note on the output that the intercept is 664.74
- In a simple linear regression model with one predictor, the *standardized* (β) is the same as the correlation coefficient.
 - \ast A one standard deviation increase in el_pct is associated with a .644 standard deviation decrease in testscr.
 - * Standardizing puts the two variables on the same scale
- Note the 95% confidence intervals for the coefficients. Do they contain 0?
 - * If the confidence interval contains 0, the effect is non-significant

Coefficients^a

		Unstand Coeff	dardized ficients	S	Standardiz ed Coefficient s				95.0% Co Interva	nfidence I for B]
Mode		в	Std. Error		Beta		t	Sig.	Lower Bound	Upper Bound	
1	(Constant)	664.739	.941			Π	706.687	.000	662.890	666.588	3
-	el_pct	671	.039		644		-17.216	.000	748	595	5
Mode 1	el (Constant) el_pct	в 664.739 671	Sta. Error .941 .039		веtа 644		t 706.687 -17.216	Sig. .000 .000	Bound 662.890 748	Bound 666.5 5	1 588 595

a. Dependent Variable: testscr

• Residual Scatterplot

- Plots the residuals against the predicted values
- $\ast\,$ AKA: Is there a relationship between the model predicted test scores and the residuals (errors) $-\,$ Used to evaluate the homoscedasticity assumption
 - * Ideally, we'd like to see a completely random pattern
- Because the residuals and predicted values are standardized, this tells us how "spread out" they are

Regression Equation

$$\hat{y} = \beta_0 + \beta_1 * x$$

 $\hat{y} = 664.74 - .671 * el - pct$

$\mathbf{In}~\mathbf{R}$

1. Use base R to run the model

```
model<-lm(testscr~el_pct,data=lab1data)
summary(model)
anova(model)</pre>
```

Advanced: Pretty output created using the stargazer package

	Dependent variable:
	testscr
el_pct	-0.671^{***}
	(0.039)
Constant	664.739***
	(0.941)
Observations	420
\mathbb{R}^2	0.415
Adjusted \mathbb{R}^2	0.413
Residual Std. Error	$14.592 \ (df = 418)$
F Statistic	296.402^{***} (df = 1; 418)
Note:	*p<0.1; **p<0.05; ***p<0.01

Table 1:

2. Plot the residuals on a scatterplot using base R

Graph will be reversed from SPSS but will contain same info plot(model)

Variable recode (HW)

Notice that the variable **completeA_G** has some missing values. Let's recode those missing values to -999.

- 1. Select Transform > Recode into different variables
- 2. Drag completeA_G into the Variable box.
- 3. Under **Output Variable**, type a new name. We'll use **A_G_missing** but you can use whatever you want.
- 4. Press CHANGE!
- 5. Select Old and New Values

- 6. Under Old Value, select System or user missing
- 7. Under New Value, type -999
- 8. Press ADD!
- 9. Under Old Value, select All other values
- 10. Under New Value, select Copy old value(s)
- 11. Press ADD!
- 12. Select Continue
- 13. Press \mathbf{OK}

ta Recode into Different Variables: Old and New Values	×
 Recode into Different Variables: Old and New Values Old Value Yalue: System-missing System- or user-missing Range: Range, LOWEST through value: Range, value through HIGHEST: 	X New Value
O All other values	Convert numeric strings to numbers ('5'->5)
	Cancel Help

- 14. Look at your **Data View** tab in your dataset and scroll to the right. You'll notice that you have a new variable called **A_G_missing** where all missing values are coded as -999.
- 15. Select the **Variable View** tab.
- 16. Go down to the row that contains the variable **A_G_missing** and select the cell in the **Missing** column. Click on the "..." on the right side of the cell.
- 17. Enter -999 under Discrete Missing Values and select OK. You have now told SPSS that all -999 values are missing values.

HW HINTS:

- Important: Make sure to USE the new variable you created in subsequent analyses.
- Important: In the HW, we are recoding numeric values into missing (opposite of above). Also, the missing value in the HW is not -999. Look at the Missing column of the Variable View to figure out what the value is.

In R

- 1. Use the sjmisc package
- Make sure to tell R to copy the other values using else=copy
- Note: This is just an exercise to copy what we're doing in SPSS. We would never do this in R. Always tell R that missing values are NA. For example, if you read data in from SPSS that had all missing values coded as -999, we'd use the recode command and write -999=NA

lab1data\$A_G_missing<-sjmisc::rec(lab1data\$completeA_G,rec="NA=-999;else=copy")

General R hints

• To install packages:

install.packages("packagename")

• To load libraries:

library(packagename)

• To call a command from a specific package:

packagename::command

- Revisit "Intro to R" lab from Week 1 on gauchospace
- If you just run the code above, you won't really learn much. Force yourself to retype it and mess around with the code to learn more. Remember, you're learning a language!
- Google is your friend!
 - Seriously, all I do is Google everything
- We have a stat software support person (Adam Garber). Email him to schedule a meeting if you have more questions about R.