214A: Lab 7 TA: Melissa Gordon Wolf Fall 2019

Goals for today

- 1. Descriptives & recoding variables
- 2. T-tests & confidence intervals $% \left({{{\mathbf{T}}_{{\mathbf{T}}}}_{{\mathbf{T}}}} \right)$
- 3. Compute effect sizes
- Our research question: Is income related to academic achievement?
- Testable hypothesis: Do students in poverty score lower on math tests?
- Null hypothesis: Students in poverty do not score differently on math tests than students who are not poverty.
- Alternative hypothesis: Students in poverty do score differently on math tests than students who are not poverty.
- Independent/Grouping variable: X1Poverty
- Dependent/Outcome variable: X1TXMSCR

1. Descriptives & recoding variables

We always begin by investigating the variables we want to use in our analysis.

In SPSS

For categorical variables:

Analyze > Descriptive Statistics > Frequencies

the Frequencies		× þ
 X1DUALLANG X1RACE X1TXMTH X1SES X1MTHID X1FAMINCOME X2EVERDROP X3EVERDROP X1TXMSCR 	Variable(s):	Statistics) Charts) Eormat) Style) Bootstrap)
☑ Display frequency tables	OK Paste Reset Cancel Help)))

Statistics

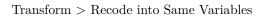
X1 Poverty indicator (relative to 100% of Census poverty threshold)

N Valid 23503 Missing 0

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Missing	55	.2	.2	.2
	Unit non-response	6715	28.6	28.6	28.8
	At or above poverty threshold	14062	59.8	59.8	88.6
	Below poverty threshold	2671	11.4	11.4	100.0
	Total	23503	100.0	100.0	

X1 Poverty indicator (relative to 100% of Census poverty threshold)

For continuous variables:


Analyze > Descriptive Statistics > Explore

ta Explore	Dependent List:	×
 X1DUALLANG X1RACE X1TXMTH X1SES X1MTHID X1POVERTY X1POVERTY X1FAMINCOME X2EVERDROP X3EVERDROP 	Eactor List Label <u>C</u> ases by:	Statistics Plots Options Bootstrap
Display <u> </u>	OK Paste Reset Cancel Help	

Descriptives

			Statistic	Std. Error	
×1 Mathematics	Mean	Mean			
IRT-estimated	95% Confidence	Lower Bound	40.0255		
number right score (of 72 base year	Interval for Mean	Upper Bound	40.3462		
items)	5% Trimmed Mean	5% Trimmed Mean			
	Median	40.4034			
	Variance		143.497		
	Std. Deviation		11.97902		
	Minimum		15.85		
	Maximum		69.93		
	Range				
	Interquartile Range		17.30		
	Skewness		030	.017	
	Kurtosis		637	.033	

We can see that we need to recode our categorical variable because we have a bunch of missing values that aren't correctly coded as missing.

Mathematic U.9.00 Miccing		
talue Labels		\times
Value Labels Value: Label:		Spelling
Add Change Remove -9 = "Missing" -8 = "Unit non-resp -7 = "Item legitima 0 = "At or above po 1 = "Below poverty	te skip/NA" overty threshold"	
ОК	Cancel Help	
Recode into Same Variables: Old and New Values		×
Old Value © Value:	New Value © Value: @ System-missing	
System-missing	Old> New:	
System- or user-missing Range: -9 through Range, LOWEST through value: Range, value through HIGHEST: All other values	_9 thru -7> SYSMIS Change Remove	
Continue	Cancel Help	

Statistics

X1 Poverty indicator (relative to 100% of Census poverty threshold)

N Valid 16733 Missing 6770

X1 Poverty indicator	(relative to	100% of Census	poverty threshold)
----------------------	--------------	----------------	--------------------

				Valid	Cumulative
		Frequency	Percent	Percent	Percent
Valid	At or above poverty threshold	14062	59.8	84.0	84.0
	Below poverty threshold	2671	11.4	16.0	100.0
	Total	16733	71.2	100.0	
Missing	System	6770	28.8		
Total		23503	100.0		

${\rm In}\ {\rm R}$

```
#Read in the data
library(haven)
lab8data <- read_sav("C:/Users/Melissa/Documents/UCSB/214/Lab 7/lab7data.sav")
df<-lab8data
#For categorical variables (sjmisc package)
frq(df$X1POVERTY)
##
## X1 Poverty indicator (relative to 100% of Census poverty threshold) (x) <numeric>
## # total N=23503 valid N=23503 mean=-2.19 sd=3.71
##
                                         frq raw.prc valid.prc cum.prc
##
    val
                                 label
     -9
##
                              Missing
                                          55
                                                0.23
                                                          0.23
                                                                   0.23
##
     -8
                    Unit non-response
                                        6715
                                               28.57
                                                         28.57
                                                                  28.80
##
     -7
              Item legitimate skip/NA
                                                0.00
                                                          0.00
                                                                  28.80
                                          0
##
     0 At or above poverty threshold 14062
                                               59.83
                                                         59.83
                                                                  88.64
##
              Below poverty threshold 2671
                                               11.36
                                                         11.36 100.00
     1
##
     NA
                                  <NA>
                                           0
                                                0.00
                                                            NA
                                                                     NA
#For continuous variables (psych package)
describe(df$X1TXMSCR)
##
      vars
               n mean
                          sd median trimmed
                                               mad
                                                     min
                                                           max range skew kurtosis
                                      40.25 12.85 15.85 69.93 54.08 -0.03
## X1
         1 21444 40.19 11.98
                               40.4
                                                                               -0.64
##
        se
## X1 0.08
summary(df$X1TXMSCR)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                       NA's
                                               Max.
##
     15.85
                                                       2059
             31.79
                     40.40
                              40.19
                                      49.09
                                              69.93
```

We want to make sure that we only use the 0 and 1 values from the poverty indicator in our analysis. To do

```
this, let's recode -9 and -8 as NA, so that we can omit NA values in our dataset.
#sjmisc package
frq(df$poverty<-rec(df$X1POVERTY, rec="-9=NA;-8=NA;else=copy"))</pre>
##
## X1 Poverty indicator (relative to 100% of Census poverty threshold) (x) <numeric>
## # total N=23503 valid N=16733 mean=0.16 sd=0.37
##
##
    val
          frq raw.prc valid.prc cum.prc
##
      0 14062
                59.83
                                   84.04
                           84.04
##
      1
        2671
                11.36
                           15.96
                                  100.00
##
     NA
        6770
                28.80
                              NΑ
                                      NA
#Check the dataset to see that we added the variable correctly
View(df)
#Add value labels to the new variable (Base R)
df$poverty<-factor(df$poverty,
                   levels=c(0,1),
                   labels=c("At or above poverty threshold",
                            "Below poverty threshold"))
#Check to see if the variable labels were added properly
frq(df$poverty)
##
## x <categorical>
## # total N=23503 valid N=16733
                                   mean=1.16 sd=0.37
##
##
                                     frq raw.prc valid.prc cum.prc
                               val
##
    At or above poverty threshold 14062
                                            59.83
                                                      84.04
                                                              84.04
##
          Below poverty threshold
                                    2671
                                            11.36
                                                      15.96
                                                             100.00
##
                              <NA>
                                    6770
                                            28.80
                                                         NA
                                                                 NA
#Pro-tip: If you wanted to delete the variable you created, you could use "df$poverty<-NULL"
```

2. T-tests & confidence intervals

Let's run a t-test to see if these group means are statistically significantly different. In other words, is the average math test score statistically significantly different for students that are in poverty and students that are not in poverty?

In SPSS

Analyze > Compare Means > Independent Samples T-test

Independent-Samples T	Test	×				
Image: Stu_ID Image: Stu_ID Image: X1DUALLANG Image: X1RACE Image: X1FAMINCOME Image: X2EVERDROP Image: X3EVERDROP	Test Variable(s): ✓ X1TXMSCR ✓ Grouping Variable: X1POVERTY(0 1) Define Groups	Options				
OK Paste Reset Cancel Help						

Group Statistics

	X1 Poverty indicator (relative to 100% of Census poverty threshold)	N	Mean	Std. Deviation	Std. Error Mean
X1 Mathematics IRT-estimated	At or above poverty threshold	13828	42.5134	11.73267	.09977
number right score (of 72 base year items)	Below poverty threshold	2601	35.3407	10.90590	.21384

Independent Samples Test

			ene's Test for ty of Variances t-test f			st for Equality	of Means			
						Sig. (2-	Mean	Std. Error	95% Confide of the Dif	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
×1 Mathematics IRT-estimated	Equal variances assumed	16.699	.000	28.917	16427	.000	7.17267	.24804	6.68648	7.65886
number right score (of 72 base year items)	Equal variances not assumed			30.396	3821.189	.000	7.17267	.23597	6.71003	7.63531

Quiz questions

(Answer on Gauchospace)

$\mathbf{In}\ \mathbf{R}$

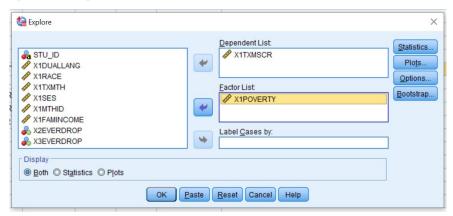
```
#We can run a t-test in Base R
t.test(df$X1TXMSCR~df$poverty)
```

```
##
## Welch Two Sample t-test
##
## data: df$X1TXMSCR by df$poverty
## t = 30.396, df = 3821.2, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 6.710027 7.635314
## sample estimates:
## mean in group At or above poverty threshold</pre>
```

##						42.51341
##	mean	in	group	Below	poverty	threshold
##						35.34074

3. Compute effect sizes

We can see that the difference between groups is statistically significant, but let's see how meaningfully different it is by computing an effect size measure like Cohen's D.


In SPSS

SPSS actually cannot give us an effect size measure. Thus, we have to do this in Excel.

First, we need the equation:

$$d = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{(n_1 - 1)*s_1^2 + (n_2 - 1)*s_2^2}{n_1 + n_2 - 2}}}$$

We see that we need the mean, standard deviation, and sample size from each group. Let's get this from Analyze > Descriptives > Explore:

Case Processing Summary

	×1 Poverty indicator	Cases							
	(relative to 100% of Census poverty – threshold)	V	alid	Mis	sing	Т	otal		
		Ν	Percent	Ν	Percent	Ν	Percent		
X1 Mathematics IRT-estimated	At or above poverty threshold	13828	98.3 %	234	1.7%	14062	100.0%		
number right score (of 72 base year items)	Below poverty threshold	2601	97.4%	70	2.6%	2671	100.0%		

	X1 Poverty indicator	Statistic	Std. Error		
X1 Mathematics	At or above poverty threshold	Mean	42.5134	.09977	
IRT-estimated number right score (of 72 base year items)		95% Confidence Interval for Mean	Lower Bound	42.3178	
			Upper Bound	42.7090	
		5% Trimmed Mean		42.6078	
		Median		42.6622	
		Variance		137.656	
		Std. Deviation		11.73267	
		Minimum		15.97	
		Maximum		69.93	
		Range		53.96	
		Interquartile Range		16.35	
		Skewness		154	.021
		Kurtosis		526	.042
	Below poverty threshold	Mean		35.3407	.21384
		95% Confidence Interval for Mean	Lower Bound	34.9214	
			Upper Bound	35.7601	
		5% Trimmed Mean		35.0606	
		Median		35.7610	
		Variance		118.939	
		Std. Deviation		10.90590	

Now, let's compute Cohen's D using the above equation. You can do this on a calculator, you can use Excel, or you can google it.

	Mean	SD	N					
Group 0	42.51341	11.73267	14062					
Group 1	35.34074	10.9059	2671					
Numerator	=C3-0	24						
Denominator	=SQR	T((((E3-	·1)*D3	^2)+((E4-1)*	D4^2))	/(E4+E	3-2))
Cohen's d = N	umerator /	Denomina	tor					

Quiz question: What is the effect size?

(Answer on Gauchospace)

${\rm In}\ {\rm R}$

To practice, let's calculate this statistic computationally and then ask R to replicate the results using a package.

$$d = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{(n_1 - 1)*s_1^2 + (n_2 - 1)*s_2^2}{n_1 + n_2 - 2}}}$$

Begin by getting the mean, standard deviation, and sample size for each group.

```
#dplyr package
```

```
df%>%
group_by(poverty)%>%
summarise(mean=mean(X1TXMSCR,na.rm=TRUE),sd=sd(X1TXMSCR,na.rm=TRUE),n=n())
```

```
## Warning: Factor `poverty` contains implicit NA, consider using
## `forcats::fct_explicit_na`
## # A tibble: 3 x 4
##
    poverty
                                   mean
                                            sd
                                                   n
##
     <fct>
                                   <dbl> <dbl> <int>
## 1 At or above poverty threshold 42.5 11.7 14062
## 2 Below poverty threshold
                                   35.3 10.9 2671
## 3 <NA>
                                   36.3 11.4 6770
```

Next, let's save these values as objects and then use the objects to write out the equation.

```
x1=42.51341
x2=35.34074
sd1=11.73267
sd2=10.90590
n1=14062
n2=2671
numer=x1-x2
denom=(sqrt((((n1-1)*sd1^2)+((n2-1)*sd2^2))/(n1+n2-2)))
numer/denom
```

[1] 0.6180842

That was a lot of work! Let's see if we can get a package to replicate that for us.

```
#There are quite a few packages that will give us Cohen's D
```

```
#lsr package
cohensD(df$X1TXMSCR~df$poverty)
```

[1] 0.618028

```
#effsize package
#df$X1TXMSCR is numeric, but effsize doesn't recognize that because it isn't
#compatible with the haven package
class(df$X1TXMSCR)
```

[1] "haven_labelled"

```
#Relabel it as numeric and use that variable
df$num <- as.numeric(df$X1TXMSCR)</pre>
```

```
#There are two packages that use the function cohen.d: psych and effsize. To
#tell R that we want it to use the effsize package, start with effsize:: and
#then type cohen.d. You can think of this as typing "library::function".
effsize::cohen.d(df$num~df$poverty)
```

##
Cohen's d
##
d estimate: 0.618028 (medium)
95 percent confidence interval:
lower upper
0.5756058 0.6604501

#We get the effect size, the confidence interval, and the magnitude.